Лист: функции, внешнее и внутреннее строение, жилкование, листорасположение и видоизменения. Строение листа растения, типы расположения листовых пластин, фотосинтез и транспирация Края листовой пластинки

Математическая модель кинетики роста растений

Колпак Евгений Петрович,

доктор физико-математических наук,

Столбовая Мария Владимировна,

аспирант.

Санкт-Петербургский государственный университет.

Mathematical Model of Plant Growth Kinetics

Maria Stolbovaya

doctoral student, St. Petersburg State University.

Evgenii Kolpak

D.Sc, St. Petersburg State University.

В работе приводятся результаты исследований по изучению кинетики роста растений. На основе экспериментальных данных предложена математическая модель изменения линейных размеров растений, представляющая собой задачу Коши для обыкновенного дифференциального уравнения.

Ключевые слова: математическое моделирование, морфогенез, кинетика роста.

This paper describes the results of a study in the kinetics of plant growth and offers a mathematical model of changes in their dimensions based on the experimental data obtained. The model is a Cauchy problem for an ordinary differential equation.

Keywords: mathematical modeling, morphogenesis, growth kinetics.

Динамика роста растений впервые, по-видимому, описана в работах Сакса (1832 – 1897) – линейный размер растений во времени в его экспериментах изменялся по «логистической» зависимости. На сегодняшний день многочисленные экспериментальные данные, опубликованные в литературных источниках , с различной степенью точности согласуются с таким характером изменений, как линейных размеров, так и суммарной биомассы растений. Однако, для описания изменения «параметра», характеризующего как рост отдельного растения, так и накопление их общей биомассы, предлагаются различные аппроксимирующие зависимости такие, как экспоненциальная, линейная, параболическая и другие , не учитывающие внутренние биологические процессы, обуславливающие рост растений, и внешние воздействия, такие как дополнительное питание, температурные изменения, антропогенное воздействие. В работе предлагается математическая модель роста отдельного растения, разработанная на основе авторских экспериментальных данных.

Анализ кинетики роста растений проводился на таких растениях как гречиха, просо, момордика, лагенария, лаванда, чуфа, тюльпан и др. Исследования проводились с 2000 по 2012 год на учебно-опытном участке Кингисеппской станции юных натуралистов и в теплицах ЗАО «Радуга» Кингисеппского района. В экспериментах принимали участие Столбовая М.В., Мерзлякова С.Н., Лихачёва Н.В.

Всерастения (табл. 1), кроме тюльпанов, выращивались в летний период в естественных условиях с 2000 по 2012 гг. Для тюльпанов производилась выгонка в зимний период в условиях, при которых регулировалась температура почвы и воздуха. На выращивание каждого сорта выделялось площадь в 10 кв.м. Некоторые растения требовали предпосевной обработки семян, выращивания рассады, подготовки почвы с её дезинфекцией раствором марганцево-кислого калия. На постоянное место высаживались (высевались) тогда, когда миновала угроза возврата заморозков. Дополнительное питание растениям давали в виде подкормок сложным минеральным удобрением. Прополку и полив производили по мере надобности. В процессе роста растений проводились замеры высоты растений механическим способом на протяжении всего вегетационного. Высота растений измерялась с помощью линейки примерно 1 раз в 7-10 дней. Температура измерялась ежедневно.

На рис. 1 приведены экспериментальные данные (отмечены звёздочками) для гречихи 1. Аналогичные зависимости (согласуется с данными, опубликованными в ) получены и для остальных растений (табл. 1) за весь период проведения эксперимента. Максимальная высота растений изменялась от 17 см до 110 см. Время роста от 80 до 110 дней.

Рис. 1. Зависимость «высота растения – время» для гречихи 1.

Все экспериментальные данные по кинетике роста близки к логистической зависимости. Т.е., для описания динамики роста растений можно использовать уравнение :

где – время (дни), − текущая высота растения (см), − теоретическая максимальная высота (см), которую может достигнуть растение по окончанию роста, − константа (удельная скорость роста, размерность – 1/день ). Решением данного уравнения является функция ( − начальная высота растения):

.

Эта зависимость использовалась для описания полученных экспериментальных данных. Константы и подбирались с применением метода наименьших квадратов. Результаты обработки экспериментов (константа ) для некоторых растений приведены в табл. 1. Как следует из полученных результатов, константы для исследуемых растений изменялись в диапазоне 0.06 – 0.15. Погрешность их определения за три года измерений по всем культурам составляла не более остальные 5 %.

Таблица 1.

Выращиваемые растения и расчетные значения удельных скоростей роста.

Название растения

Удельная скорость роста ()

Название растения

Удельная скорость роста ()

Гречиха 1

0.15

Просо казанское 176

0.07

Гречиха 2

0.17

Тюльпан Denise

0.06

Просо вольное

0.09

Тюльпан Denmark

0.09

Просо быстрое

0.08

Тюльпан Escape

0.09

Одним из самых важным факторов, влияющих на рост растений, является температура. Как следует из наших экспериментальных данных, изменение температуры во времени в течение вегетационного периода можно описать функцией

где – минимальная температура за вегетационный период, а – максимальная, – частота изменения максимальных значений температуры.

Растения, с которыми проводился эксперимент, развиваются, если температура воздуха изменяется в диапазоне от (10°С в эксперименте) до (30°С в эксперименте). Если считать, что скорость роста максимальна при температуре , тогда удельная скорость роста растения будет пропорциональна функции

если ,

если или ,

где − значение температуры в текущий момент времени.

Эта функция температуры принимает нулевые значения при и и достигает экстремума равного 1 при . Аналогичный подход учета влияния температуры на рост растений использовался в .

Уравнение, для скорости роста растений с учетом введенного температурного режима примет вид:

, если ,

Если или .

В этой модели предполагается, что растение не погибает при «нарушении» температурного режима, а лишь прекращается его рост. Численное решение дифференциальных уравнений и обработку экспериментальных данных удобнее реализовывать в среде программирования математического пакета Matlab , имеющего набор необходимых встроенных функций.

Таким образом, учет температурного режима может более точно описать экспериментальные данные и объяснить отклонения экспериментальных данных от логистической зависимости более «биологически» обоснованной, чем полиноминальные функции.

Литература

1. Баранов В.Д., Устименко Г.В. Мир культурных растений. М.: Мысль, 1994. 232 с.

2. Винокурова Р.И., Силкина О.В. Ростовые характеристики хвои деревьев пихты сибирской (Abies Sibiricf L.) и ели обыкновенной (Picea Abies L.) // Вестник МарГТУ. 2008. № 2. С. 40 – 50.

3. Горбунова Е.А., Колпак Е.П. Математические модели одиночной популяции // Вест. С.-Петерб. ун-та. Сер. 10: Прикладная математика, информатика и процессы управления. 2012. Вып. 4. С. 18 – 30.

4. Зайцев Г.Н. Математическая статистика в экспериментальной ботанике. – М.: Наука, 1984. 424 с.

5. Звягинцев А.Ю. Морское обрастание в северо-западной части Тихого океана. Владивосток: Дальнаука, 2005. 432 с.

6. Злобин Ю.А. Популяционная экология растений: современное состояние. Сумы: Университетская книга. 209. 263 с.

7. Колпак Е.П. MatLab: методы вычислений / Санкт-Петербургский гос. ун-т. Санкт-Петербург, 2007. 100 с.

8. Кузнецов В.И., Козлов Н.И., Хомяков П.М. Математическое моделирование эволюции леса для целей управления лесным хозяйством хозяйством. М.: Ленад. 2005. 232 с.

9. Медведев С.С. Физиология растений: Учебник. – Спб.: Изд-во С.-Петерб. ун-та, 2004. 336 с.

10. Назарова С.А., Генельт-Яновский Е.А., Максимович Н.В. Линейный рост Macoma Balthica в осушенной зоне мурманского побережья Баренцева моря // Вестник СПбГУ. Сер. 3. 2010. Вып. 4. С. 35 – 43.

11. Разин Г.С., Рогозин М.В. О ходе роста древостоев. Догматизм в лесной таксации // Вестник Пермского ун-то. Биология. 2009. Вып. 10(36) . с. 9 – 38.

12. Раилкин А.И. Колонизация твердых тел бентосными организмами. – СПб.: Изд-во С.-Петерб. ун-та, 2008. 427 с.

13. Суханова Е.С., Кочкин Д.В., Титова М.В., Носов А.М. Ростовые и биосинтетические характеристики разных штаммов культур клеток растений рода Polyscias // Вестник ПГТУ. 2012. № 2. С. 57 – 66.

14. Уоринг Ф., Филипс И.Ф. Рост растения и дифференцировка. М.: Мир. 1984. 512 с.

15. Усольцев В.А., Воробейчик Е.Л., Бергман Биологическая продуктивность лесов Урала в условиях техногенного загрязнения: исследование системы связей и закономерностей. Екатеринбург: УГЛТУ. 2012. – 366 с.

16. Hewatt W.G. Ecological succession in the Mytilus californianus habitat as Observed in Monterey Bay // Cal. Ecol. 1935. V. 16. P. 244-251.

17. Prisman T.I., Slyusar N.A. Mathematical model of seasonal growth of halophytic plant community with account of environmental factors: International meeting of soil fertility land management and agro climatology. Turkey, 2008. P. 43-51.

18. Urban H.J. Modeling growth of different developmental stages in bivalves // Mar. Ecol. Prog. Ser. 2002. Vol. 238. P. 109-114.

19. Wahl M. Living attached: Aufwuchs, fouling, epibiosis // Fouling Organisms in the Indian Ocean: Biology and Control Technology (Nagabhushanam R., Thompson M.F., Eds.). New Delhi: Oxford and IBH Publ. Co, 1997. P. 31-83.

20. Wahl M. Marine epibiosis. I. Fouling and antifouling: some basic aspects // Mar. Ecol. Progr. Ser. 1989. Vol. 58, N 1-2. P. 175-189.

21. Wahl M., Hoppe K. Interactions between substratum rugosity, colonization density and periwinkle grazing efficiency // Mar. Ecol. Prog. Ser. 2002. Vol. 225. P. 239-249.

Лист — чрезвычайно важный орган растения. Лист — часть побега. Основными функциями его являются фотосинтез и транспирация. Лист характеризуется высокой морфологической пластичностью, разнообразием форм и большими приспособительными возможностями. Основание листа может расширяться в виде косых листовидных образований — прилистников с каждой стороны листа. В некоторых случаях они настолько велики, что играют определённую роль в фотосинтезе. Прилистники бываю свободными или приросшими к черешку, они могут смещаться на внутреннюю сторону листа и тогда их называют пазушными. Основания листьев могут быть превращены во влагалище, окружающее стебель и препятствующие его сгибанию.

Внешнее строение листа

Листовые пластинки различаются по размерам: от нескольких миллиметров до 10-15 метров и даже 20 (у пальм). Продолжительность жизни листьев не превышает нескольких месяцев, у некоторых — от 1,5 до 15 лет. Размер и форма листьев являются наследственными признаками.

Части листа

Лист — боковой вегетативный орган, растущий от стебля, имеющий двустороннюю симметрию и зону роста при основании. Лист обычно состоит из листовой пластинки, черешка (исключением являются сидячие листья); для ряда семейств характерны прилистники. Листья бываю простые, имеющие одну листовую пластинку, и сложные — с несколькими листовыми пластинками (листочками).

Листовая пластинка — расширенная, обычно плоская часть листа, выполняющая функции фотосинтеза, газообмена, транспирации и у некоторых видов — вегетативного размножения.

Основание листа (листовая подушка) — часть листа, соединяющая его со стеблем. Здесь находится образовательная ткань, дающая рост листовой пластинке и черешку.

Прилистники — парные листовидные образования в основании листа. Они могут опадать при развёртывании листа или сохраняться. Защищают пазушные боковые почки и вставочную образовательную ткань листа.

Черешок — суженная часть листа, соединяющая своим основанием листовую пластинку со стеблем. Он выполняет важнейшие функции: ориентирует лист по отношению к свету, является местом расположения вставочной образовательной ткани, за счёт которой растёт лист. Кроме этого, он имеет механическое значение для ослабления ударов по листовой пластинке от дождя, града, ветра и пр.

Простые и сложные листья

Лист может иметь одну (простой), несколько или множество листовых пластинок. Если последние снабжены сочленениями, то такой лист называется сложным. Благодаря сочленениям на общем черешке листа листочки сложных листьев опадают поодиночке. Однако у некоторых растений сложные листья могут опадать и целиком.

По форме цельные листья, различают как лопастные, раздельные и рассечённые.

Лопастным называю лист, у которого вырезы по краям пластинки доходят до одной четверти его ширины, а при большем углублении, если вырезы достигают более четверти ширины пластинки, лист называется раздельным. Лопасти раздельного листа называют долями.

Рассечённым называют лист, у которого вырезы по краям пластинки доходят почти до средней жилки, образуя сегменты пластинки. Раздельные и рассечённые листья могут быть пальчатые и перистые, дважды пальчатые и дважды перистые и т.д. соответственно этому различают пальчато-раздельный лист, перисторассечённый лист; непарно-перисторассечённый лист у картофеля. Он состоит из конечной доли, нескольких пар боковых долек, между которыми располагаются ещё меньшие дольки.

Если пластинка удлинённая, а доли или сегменты её треугольные, лист называют струговидным (одуванчик); если боковые доли неравновеликие, к основанию уменьшаются, а конечная доля крупная и округлая, получается лировидный лист (редька).

Что касается сложных листьев, то среди них различают тройчатосложные, пальчатосложные и перистосложные листья. Если сложный лист состоит из трёх листочков, он называется тройчатосложным, или тройчатым (клён). Если черешочки листочков прикрепляются к главному черешку как бы в одной точке, а самые листочки расходятся радиально, лист называется пальчатосложным (люпин). Если на главном черешке боковые листочки расположены с обеих сторон по длине черешка, лист называется перистосложным.

Если такой лист заканчивается наверху непарным одиночным листочком, получается, непарноперистый лист. Если же конечного нет, лист называется парноперистым.

Если каждый листочек перистосложного листа, в свою очередь, является сложным, то получается дважды перистосложный лист.

Формы цельных листовых пластинок

Сложным листом называют такой, на черешке которого имеется несколько листовых пластинок. Они крепятся к главному черешку своими собственными черешками, нередко самостоятельно, поодиночке, опадают, и называются листочками.

Формы листовых пластинок различных растений отличаются по очертанию, степени расчленённости, форме основания и верхушки. Очертания могут быть овальными, круглыми, эллиптическими, треугольными и другими. Листовая пластинка бывает удлиненной. Свободный конец её может быть острым, тупым, заострённым, остроконечным. Основание её сужено и оттянуто к стеблю, может быть округлым, сердцевидным.

Прикрепление листьев к стеблю

Листья прикрепляются к побегу длинными, короткими черешками или бывают сидячими.

У некоторых растений основание сидячего листа на большом протяжении срастается с побегом (низбегающий лист) или побег пронизывает листовую пластинку насквозь (пронзённый лист).

Форма края листовой пластинки

Листовые пластинки различают по степени рассечённости: неглубокие надрезы — зубчатые или пальчатые края листа, глубокие вырезы — лопастные, раздельные и рассечённые края.

Если края листовой пластинки не имеют никаких выемок, лист называется цельнокрайним . Если выемки по краю листа неглубокие, лист называется цельным .

Лопастной лист — лист, пластинка которого расчленена на лопасти до 1/3 ширины полулиста.

Раздельный лист — лист с пластинкой, расчленённой до ½ ширину полулиста.

Рассечённый лист — лист, пластинка которого расчленена до главной жилки или до основания листа.

Край листовой пластинки — пильчатый (острые углы).

Край листовой пластинки — городчатый (округлые выступы).

Край листовой пластинки — выемчатый (округлые выемки).

Жилкование

На каждом листе легко заметить многочисленные жилки, особенно отчётливые и рельефные на нижней стороне листа.

Жилки — это проводящие пучки, соединяющие лист со стеблем. Функции их — проводящая (снабжение листьев водой и минеральными солями и выведение из них продуктов ассимиляции) и механическая (жилки являются опорой для листовой паренхимы и защищают листья от разрывов). Среди разнообразия жилкования различают листовую пластинку с одной главной жилкой, от которой расходятся боковые ответвления по перистому или пальчатоперистому типу; с несколькими главными жилками, различающимися толщиной и направлением распределения по пластинке (дугонервный, параллельный типы). Между описанными типами жилкования существует много промежуточных или иных форм.

Исходная часть всех жилок листовой пластинки находится в черешке листа, откуда выходит у многих растений основная, главная жилка, разветвляясь потом в толще пластинки. По мере удаления от главной, боковые жилки всё утончаются. Самые тонкие большей частью находятся на периферии, а также вдали от периферии — посредине участков, окружённых мелкими жилками.

Существует несколько типов жилкования. У однодольных растений жилкование бывает дугонервным, при котором от стебля или влагалища вступает в пластинку ряд жилок, дугообразно направленных к вершине пластинки. У большинства злаков имеет место параллельнонервное жилкование. Дугонервное жилкование существует также у некоторых двудольных растений, например, подорожника. Однако и у них имеется связь между жилками.

У двудольных растений жилки образуют сильно разветвлённую сеть и соответственно этому различают жилкование сетчатонервоное, что говорит о лучшем обеспечении проводящими пучками.

Форма основания, верхушки, черешка листа

По форме верхушки пластинки листья бывают тупые, острые, заострённые и остроконечные.

По форме основания пластинки различают листья клиновидные, сердцевидные, копьевидные, стреловидные и др.

Внутреннее строение листа

Строение кожицы листа

Верхняя кожица (эпидерма) — покровная ткань на обращённой стороне листа, часто покрытая волосками, кутикулой, воском. Снаружи лист имеет кожицу (покровную ткань), которая защищает его от неблагоприятных воздействий внешней среды: от высыхания, от механических повреждений, от проникновения к внутренним тканям болезнетворных микроорганизмов. Клетки кожицы живые, по размерам и форме они разные. Одни из них более крупные, бесцветные, прозрачные и плотно прилегают друг к другу, что повышает защитные качества покровной ткани. Прозрачность клеток позволяет проникать солнечному свету внутрь листа.

Другие клетки более мелкие, в них имеются хлоропласты, придающие им зелёный цвет. Эти клетки располагаются парами и обладают способностью изменять свою форму. При этом клетки или отдаляются друг от друга, и между ними появляется щель, или приближаются друг к другу и щель исчезает. Эти клетки назвали замыкающими, а возникающую между ними щель — устьичной. Устьице открывается, когда замыкающие клетки насыщены водой. При оттоке воды из замыкающих клеток устьице закрывается.

Строение устьица

Через устьичные щели воздух поступает к внутренним клеткам листа; через них же газообразные вещества, в том числе и пары воды, выходят из листа наружу. При недостаточном обеспечение растения водой (что может случиться в сухую и жаркую погоду), устьица закрываются. Этим растения защищают себя от иссушения, так как водяные пары при закрытых устьичных щелях не выходят наружу и сохраняются в межклетниках листа. Таким образом, растения сохраняют воду в засушливый период.

Основная ткань листа

Столбчатая ткань — основная ткань, клетки которой имеют цилиндрическую форму, плотно прилегают друг к другу и расположены с верхней стороны листа (обращённой к свету). Служит для фотосинтеза. Каждая клетка этой ткани имеет тонкую оболочку, цитоплазму, ядро, хлоропласты, вакуоль. Наличие хлоропластов придаёт зелёный цвет ткани и всему листу. Клетки, которые прилегают к верхней кожице листа, вытянуты и расположены вертикально, называют — столбчатой тканью.

Губчатая ткань — основная ткань, клетки которой имеют округлую форму, расположены рыхло и между ними образуются крупные межклетники, также заполненные воздухом. В межклетниках основной ткани накапливаются пары воды, поступающие сюда из клеток. Служит для фотосинтеза, газообмена и транспирации (испарения).

Количество слоёв клеток столбчатой и губчатой тканей зависит от освещения. В листьях выросших на свету, столбчатая ткань развита сильнее, чем у листьев, выросших в условиях затемнения.

Проводящая ткань — основная ткань листа, пронизанная жилками. Жилки — это проводящие пучки, так как они образованы проводящими тканями — лубом и древесиной. По лубу осуществляется передача растворов сахара из листьев ко всем органам растения. Движение сахара идёт по ситовидным трубкам луба, которые образованы живыми клетками. Эти клетки вытянуты в длину, и в том месте, где они соприкасаются друг с другом короткими сторонами в оболочках, имеются небольшие отверстия. Через отверстия в оболочках раствор сахара переходит из одной клетки в другую. Ситовидные трубки приспособлены к передаче органического вещества на большое расстояние. Плотно по всей длине к боковой стенке ситовидной трубки прилегают живые клетки меньших размеров. Они сопутствуют клеткам трубки, и их называют клетками спутницами.

Строение жилок листа

Кроме луба в состав проводящего пучка входит и древесина. По сосудам листа, так же как и в корне, движется вода с растворёнными в ней минеральными веществами. Воду и минеральные вещества растение поглощает из почвы корнями. Затем из корней по сосудам древесины эти вещества поступают в надземные органы, в том числе и к клеткам листа.

В состав многочисленных жилок входят волокна. Это длинные клетки с заострёнными концами и утолщёнными одревесневшими оболочками. Крупные жилки листа нередко окружены механической тканью, которая целиком состоит из толстостенных клеток — волокон.

Таким образом, по жилкам идёт передача раствора сахара (органического вещества) из листа к другим органам растений, а от корня — воды и минеральных веществ к листьям. Из листа растворы движутся по ситовидным трубкам, а к листу — по сосудам древесины.

Нижняя кожица покровная ткань с нижней стороны листа, обычно несёт устьица.

Жизнедеятельность листа

Зелёные листья — органы воздушного питания. Зелёный лист выполняет важную функцию в жизни растений — здесь образуются органические вещества. Строение листа хорошо соответствует этой функции: он имеет плоскую листовую пластинку, а в мякоти листа содержится огромное количество хлоропластов с зелёным хлорофиллом.

Вещества необходимые для образования крахмала в хлоропластах

Цель: выясним, какие вещества необходимы для образования крахмала?

Что делаем: поместим два небольших комнатных растения в тёмное место. Через два три дня первое растение поставим на кусок стекла, а рядом поместим стакан с раствором едкой щёлочи (она поглотит из воздуха весь углекислый газ), и всё это накроем стеклянным колпаком. Для того чтобы воздух не поступал к растению из окружающей среды, смажем края колпака вазелином.

Второе растение также поставим под колпак, но только рядом с растением поместим стакан с содой (или кусочком мрамора), смоченными раствором соляной кислоты. В результате взаимодействия соды (или мрамора) с кислотой выделяется углекислый газ. В воздухе под колпаком второго растения образуется много углекислого газа.

Оба растения поместим в одинаковые условия (на свет).

На следующий день возьмём по листу с каждого растения и обработаем вначале горячим спиртом, промываем и действуем раствором йода.

Что наблюдаем: в первом случае окраска листа не изменилась. Темно-синим стал лист того растения, которое находилось под колпаком, где был углекислый газ.

Вывод: это доказывает, что углекислый газ необходим растению для образования органического вещества (крахмал). Этот газ входит в состав атмосферного воздуха. Воздух поступает в лист через устьичные щели и заполняет пространства между клетками. Из межклетников углекислый газ проникает во все клетки.

Образование в листьях органических веществ

Цель: выяснить, в каких клетках зеленого листа образуются органические вещества (крахмал, сахар).

Что делаем: комнатное растение герань окаймлённая поместим на трое суток в тёмный шкаф (чтобы произошёл отток питательных веществ из листьев). Через трое суток вынем растение из шкафа. Прикрепим на один из листьев конверт из чёрной бумаги с вырезанным словом «свет» и поставим растение на свет или под электрическую лампочку. Через 8-10 часов срежем лист. Снимем бумагу. Опустим лист в кипящую воду, а затем на несколько минут в горячий спирт (в нём хлорофилл хорошо растворяется). Когда спирт окрасится в зелёный цвет, а лист обесцветится, промоем его водой и поместим в слабый раствор йода.

Что наблюдаем: на обесцвеченном листе появятся синие буквы (крахмал синеет от йода). Буквы появляются на той части листа, на которую падал свет. Значит, в освещённой части листа образовался крахмал. Необходимо обратить внимание на то, что белая полоска по краю листа не окрасилась. Это объясняет то, что в пластидах клеток белой полоски листа герани окаймлённой нет хлорофилла. Поэтому крахмал не обнаруживается.

Вывод: таким образом, органические вещества (крахмал, сахар) образуются только в клетках с хлоропластами, и для их образования необходим свет.

Специальные исследования учёных показали, что на свету в хлоропластах образуется сахар. Затем в результате превращений из сахара в хлоропластах образуется крахмал. Крахмал — это органическое вещество, которое в воде не растворяется.

Выделяют световую и темновую фазы фотосинтеза.

Во время световой фазы фотосинтеза происходит поглощение света пигментами, образование возбуждённых (активных) молекул, обладающих избытком энергии, идут фотохимические реакции, в которых принимают участие возбуждённые молекулы пигментов. Световые реакции протекают на мембранах хлоропласта, где находится хлорофилл. Хлорофилл является высокоактивным веществом, осуществляющим поглощение света, первичное запасание энергии и дальнейшее преобразование её в химическую энергию. В фотосинтезе принимают участие и жёлтые пигменты каротиноиды.

Процесс фотосинтеза можно представить в виде суммарного уравнения:

6СО 2 + 6Н 2 О = С 6 Н 12 О 6 + 6О 2

Таким образом, суть световых реакций заключается в том, что световая энергия превращается в химическую.

Темновые реакции фотосинтеза идут в матриксе (строме) хлоропласта при участии ферментов и продуктов световых реакций и приводят к синтезу органических веществ из углекислоты и воды. Для темновых реакций не нужно непосредственное участие света.

Итогом темновых реакций является образование органических соединений.

Процесс фотосинтеза осуществляется в хлоропластах, в два этапа. В гранах (тилакоидах) протекают реакции, вызываемые светом, — световые, а в строме — реакции, не связанные со светом, — темновые, или реакции фиксации углерода.

Световые реакции

1. Свет, попадая на молекулы хлорофилла, которые находятся в мембранах тилакоидов гран, приводит их в возбуждённое состояние. В результате этого электроны ē сходят со своих орбит и переносятся с помощью переносчиков за пределы мембраны тилакоида, где и накапливаются, создавая отрицательно заряженное электрическое поле.

2. Место вышедших электронов в молекулах хлорофилла занимают электроны воды ē, так как вода под действием света подвергается фоторазложению (фотолизу):

Н 2 О↔ОН‾+Н + ; ОН‾−ē→ОН.

Гидроксилы ОН‾, став радикалами ОН, объединяются: 4ОН→2Н 2 О+О 2 , образуя воду и свободный кислород, который выделяется в атмосферу.

3. Протоны Н + не проникают через мембрану тилакоида и накапливаются внутри, используя положительно заряженное электрическое поле, что приводит к увеличению разности потенциалов по обе стороны мембраны.

4. При достижении критической разности потенциалов (200 мВ) протоны Н + устремляются по протонному каналу в ферменте АТФ-синтетаза, встроенному в мембрану тилакоида, наружу. На выходе из протонного канала создаётся высокий уровень энергии, которая идёт на синтез АТФ (АДФ+Ф→АТФ) . Образовавшиеся молекулы АТФ переходят в строму, где участвуют в реакциях фиксации углерода.

5. Протоны Н + , вышедшие на поверхность мембраны тилакоида, соединяются с электронами ē, образуя атомарный водород Н, который идёт на восстановление переносчиков НАДФ + : 2ē+2Н + =НАДФ + →НАДФ∙Н 2 (переносчик с присоединённым водородом; восстановленный переносчик).

Такими образом, активированный световой энергией электрон хлорофилла используется для присоединения водорода к переносчику. НАДФ∙Н2 переходит в строму хлоропласта, где участвует в реакциях фиксации углерода.

Реакции фиксации углерода (темновые реакции)

Осуществляется в строме хлоропласта, куда поступают АТФ, НАДФ∙Н 2 от тилакоидов гран и СО 2 из воздуха. Кроме того, там постоянно находятся пятиуглеродные соединения — пентозы С 5 , которые образуются в цикле Кальвина (цикл фиксации СО 2), Упрощённо этот цикл можно представить следующим образом:

1. К пентозе С 5 присоединяется СО 2 , в результате чего появляется нестойкое шестиугольное соединение С 6 , которое расщепляется на две трёхуглеродные группы 2С 3 — триозы.

2. Каждая из триоз 2С 3 принимает по одной фосфатной группе от двух АТФ, что обогащает молекулы энергией.

3. Каждая из триоз 2С 3 присоединяет по одному атому водорода от двух НАДФ∙Н2.

4. После чего одни триозы объединяются, образуя углеводы 2С 3 → С 6 → С 6 Н 12 О 6 (глюкоза).

5. Другие триозы объединяются, образуя пентозы 5С 3 →3С 5 , и вновь включаются в цикл фиксации СО 2 .

Суммарная реакция фотосинтеза:

6СО 2 +6Н 2 О хлорофилл энергия света →С 6 Н 12 О 6 +6О 2

Кроме углекислого газа в образовании крахмала принимает участие вода. Её растение получает из почвы. Корни поглощают воду, которая по сосудам проводящих пучков поднимается в стебель и далее в листья. А уже в клетках зелёного листа, в хлоропластах, из углекислого газа и воды при наличии света образуется органическое вещество.

Что происходит с органическими веществами, образованными в хлоропластах?

Образовавшийся в хлоропластах крахмал под воздействием особых веществ превращается в растворимый сахар, который поступает к тканям всех органов растения. В клетках некоторых тканей сахар может вновь превратиться в крахмал. Запасной крахмал накапливается в бесцветных пластидах.

Из сахаров, образовавшихся при фотосинтезе, а также минеральных солей, поглощённых корнями из почвы, растение создаёт вещества, которые ему необходимы: белки, жиры и многие другие белки, жиры и многие другие.

Часть органических веществ, синтезированных в листьях, расходуется на рост и питание растения. Другая часть откладывается в запас. У однолетних растений запасные вещества откладываются в семенах, плодах. У двулетних на первом году жизни они накапливаются в вегетативных органах. У многолетних трав вещества запасаются в подземных органах, а у деревьев и кустарников — в сердцевине, основной ткани коры и древесины. Кроме того, у них на определённом году жизни органические вещества начинают запасаться также в плодах и семенах.

Типы питания растения (минеральное, воздушное)

В живых клетках растения постоянно происходит обмен веществ и энергии. Одни вещества поглощаются и используются растением, другие выделяются в окружающую среду. Из простых веществ образуются сложные. Сложные органические вещества расщепляются на простые. Растения накапливает энергию, а в процессе фотосинтеза и освобождает её при дыхании, используя эту энергию для осуществления различных процессов жизнедеятельности.

Газообмен

Листья благодаря работе устьиц осуществляют и такую важную функцию, как газообмен между растением и атмосферой. Через устьица лист с атмосферным воздухом поступают углекислый газ и кислород. Кислород используется при дыхании, углекислый газ необходим растению для образования органических веществ. Через устьица в воздух выделяется кислород, который образовался в процессе фотосинтеза. Удаляется и углекислый газ, появившийся у растения в процессе дыхания. Фотосинтез осуществляется только на свету, а дыхание на свету и в темноте, т.е. постоянно. Дыхание во всех живых клетках органов растения происходит непрерывно. Как и животные, растения погибают с прекращением дыхания.

В природе происходит обмен веществ между живым организмом и окружающей средой. Поглощение растением одних веществ из внешней среды сопровождается выделением других. Элодея, будучи водным растением, использует для питания углекислый газ, растворённый в воде.

Цель: выясним, какое же вещество выделяет элодея во внешнюю среду при фотосинтезе?

Что делаем: стебли веточек подрежем под водой (вода кипяченная) у основания и прикроем стеклянной воронкой. Пробирку, до краёв заполненную водой помещаем на трубку воронки. Это сделать в двух вариантах. Одну ёмкость поставить в тёмное место, а другую — выставить на яркий солнечный или искусственный свет.

В третью и четвёртую ёмкости добавить углекислый газ (добавить небольшое количество питьевой соды или можно подышать в трубочку) и так же один поставить в темноту другой на солнечный свет.

Что наблюдаем: через некоторое время в четвёртом варианте (сосуд, стоящий на ярком солнечном свете) начинают выделяться пузырьки. Этот газ вытесняет из пробирки воду, её уровень в пробирке вытесняется.

Что делаем: когда вода будет вытеснена газом полностью, необходимо осторожно снять пробирку с воронки. Плотно закрыть отверстие большим пальцем левой руки, а правой быстро внести в пробирку тлеющую лучинку.

Что наблюдаем: лучинка загорается ярким пламенем. Посмотрев на растения, которые поместили в темноту, увидим, что пузырьки газа из элодеи не выделяются, и пробирка осталась заполненная водой. То же самое с пробирками в первом и втором варианте.

Вывод: отсюда следует, что газ, который выделила элодея — кислород. Таким образом, растение выделяет кислород только тогда, когда есть все условия для фотосинтеза — вода, углекислый газ, свет.

Испарение воды листьями (транспирация)

Процесс испарения воды листьями у растений регулируется открыванием и закрыванием устьиц. Закрывая устьица, растение защищает себя от потери воды. Открывание и закрывание устьиц находится под влиянием факторов внешней и внутренней среды, в первую очередь температуры и интенсивности солнечного света.

Листья растений содержат много воды. Она поступает по проводящей системе от корней. Внутри листа вода продвигается по стенкам клеток и по межклетникам к устьицам, через которые уходит в виде пара (испаряется). Этот процесс легко проверить, если выполнить несложное приспособление, как показано на рисунке.

Испарение воды растением называется транспирацией. Воду испаряет поверхность листа растения, особенно интенсивно — поверхность листа. Различают транспирацию кутикулярную (испарение всей поверхностью растения) и устьичную (испарение через устьица). Биологическое значение транспирации состоит в том, что она является средством передвижения воды и различных веществ по растению (присасывающее действие), способствует поступлению углекислого газа внутрь листа, углеродному питанию растений, защищает листья от перегрева.

Интенсивность испарения воды листьями зависит от:

  • биологических особенностей растений;
  • условий роста (растения засушливых местностей испаряют мало воды, влажных — значительно больше; теневые растения испаряют воды меньше, чем световые; много воды растения испаряют в зной, значительно меньше — в облачную погоду);
  • освещения (рассеянный свет уменьшает транспирацию на 30-40%);
  • содержания воды в клетках листа;
  • осмотического давления клеточного сока;
  • температуры почвы, воздуха и тела растения;
  • влажности воздуха и скорости ветра.

Наибольшее количество воды испаряется у некоторых видов древесных пород через листовые рубцы (рубец, оставляемый опавшими листьями на стебле), которые оказываются наиболее уязвимыми местами на дереве.

Взаимосвязь процессов дыхания и фотосинтеза

Весь процесс дыхания протекает в клетках растительного организма. Он состоит из двух этапов, в ходе которых органические вещества расщепляются на углекислый газ и воду. На первом этапе при участии специальных белков (ферментов) происходит распад молекул глюкозы на более простые органические соединения и выделяется немного энергии. Этот этап дыхательного процесса происходит в цитоплазме клеток.

На втором этапе простые органические вещества, образовавшиеся на первом этапе, под действием кислорода распадаются на углекислый газ и воду. При этом высвобождается много энергии. Второй этап дыхательного процесса протекает только с участием кислорода и в специальных тельцах клетки.

Поглощённые вещества в процессе преобразований в клетках и тканях становятся веществами, из которых растение строит своё тело. Все преобразования веществ, происходящее в организме, всегда сопровождаются потреблением энергии. Зелёное растение, как автотрофный организм, поглощая световую энергию Солнца, накапливает её в органических соединениях. В процессе дыхания при расщеплении органических веществ эта энергия высвобождается и используется растением для процессов жизнедеятельности, которые происходят в клетках.

Оба процесса — фотосинтез и дыхание — идут путём последовательных многочисленных химических реакций, в которых одни вещества преобразуются в другие.

Так, в процессе фотосинтеза из углекислого газа и воды, полученных растением из окружающей среды, образуются сахара, которые затем превращаются в крахмал, клетчатку или белки, жиры и витамины — вещества, необходимые растению для питания и запасания энергии. В процессе дыхания, наоборот, происходит расщепление созданных в процессе фотосинтеза органических веществ на неорганические соединения — углекислый газ и воду. При этом растение получает высвобождающуюся энергию. Эти превращения веществ в организме называют обменом веществ. Обмен веществ — один из важнейших признаков жизни: с прекращением обмена веществ прекращается жизнь растения.

Влияние факторов среды на строение листа

Листья растений влажных мест, как правило, крупные с большим количеством устьиц. С поверхности этих листьев испаряется много влаги.

Листья растений засушливых мест невелики по размеру и имеют приспособления, уменьшающие испарение. Это густое опушение, восковой налёт, относительно небольшое число устьиц и др. У некоторых растений листья мягкие и сочные. В них запасается вода.

Листья теневыносливых растений имеют всего два-три слоя округлых, неплотно прилегающих друг к другу клеток. Крупные хлоропласты расположены в них так, что не затеняют друг друга. Теневые листья, как правило, более тонкие и имеют более тёмную зелёную окраску, так как содержат больше хлорофилла.

У растений открытых мест мякоть листа насчитывает несколько слоев, плотно прилегающих друг к другу столбчатых клеток. В них содержится меньше хлорофилла, поэтому световые листья имеют более светлую окраску. Те и другие листья иногда можно встретить и в кроне одного и того же дерева.

Защита от обезвоживания

Наружная стенка каждой клетки кожицы листа не только утолщена, но и защищена кутикулой, которая плохо пропускает воду. Защитные свойства кожицы значительно повышаются при образовании волосков, которые отражают солнечные лучи. Благодаря этому нагревание листа понижается. Всё это ограничивает возможность испарения воды с поверхности листа. При недостатке воды закрывается устьичная щель и пар не выходит наружу, накапливаясь в межклетниках, что приводит к прекращению испарения с поверхности листа. Растения жарких и сухих мест обитания имеют небольшую пластинку. Чем меньше поверхность листа, тем меньше опасность излишней потери воды.

Видоизменения листьев

В процессе приспособления к условиям окружающей среды листья у некоторых растений видоизменились потому, что стали играть роль не свойственную типичным листьям. У барбариса часть листьев видоизменились в колючки.

Старение листьев и листопад

Листопаду предшествует старение листьев. Это значит, что во всех клетках снижается интенсивность жизненных процессов — фотосинтеза, дыхания. Уменьшается содержание уже имеющихся в клетках важных для растения веществ и сокращается поступление новых, в том числе и воды. Распад веществ преобладает над их образованием. В клетках накапливаются ненужные, и даже вредные продукты, их называют конечными продуктами обмена веществ. Эти вещества удаляются из растения при сбрасывании листьев. Наиболее же ценные соединения по проводящим тканям оттекают из листьев в другие органы растения, где откладываются в клетках запасающих тканей или сразу используется организмом для питания.

У большинства деревьев и кустарников в период старения листья меняют окраску и становятся жёлтыми или багряными. Это происходит потому, что хлорофилл разрушается. Но помимо него в пластидах (хлоропластах) имеются вещества желтого и оранжевого цвета. Летом они были, как бы замаскированы хлорофиллом и пластиды имели зелёный цвет. Кроме того, в вакуолях накапливаются другие красящие вещества жёлтого или красно-малинового цвета. Вместе с пигментами пластид они определяют окраску осенних листьев. У некоторых растений листья сохраняют зелёный цвет до отмирания.

Ещё до того как с побега упадёт лист, в его основании на границе со стеблем формируется слой пробки. Наружу от него образуется отделительный слой. Со временем клетки этого слоя оделяются друг от друга, так как ослизняется и разрушается межклеточное вещество, которое их соединяло, а иногда и оболочки клеток. Лист отделяется от стебля. Однако некоторое время он ещё сохраняется на побеге благодаря проводящим пучкам между листом и стеблем. Но наступает момент нарушения и этой связи. Рубец на месте отделившегося листа покрыт защитной тканью, пробкой.

Как только листья достигают предельных размеров, начинаются процессы старения, ведущие, в конце концов, к отмиранию листа — его пожелтение или покраснение, связанное с разрушением хлорофилла, накоплением каротиноидов и антоцианов. По мере старения листа снижается также интенсивность фотосинтеза и дыхания, деградируют хлоропласты, накапливаются некоторые соли (кристаллы оксалаты кальция), из листа оттекают пластические вещества (углеводы, аминокислоты).

В процессе старения листа близ его основания у двудольных древесных растений формируется так называемый отделительный слой, который состоит из легко расслаивающейся паренхимы. По этому слою лист и отделяется от стебля, причём на поверхности будущего листового рубца заранее образуется защитный слой пробковой ткани.

На листовом рубце заметны в виде точек поперечные сечения листового следа. Скульптура листового рубца различна и является характерным признаком для систематики лепидофитов.

У однодольных и травянистых двудольных отделительный слой, как правило, не образуется, лист отмирает и разрушается постепенно, оставаясь на стебле.

У листопадных растений опадение листьев на зиму имеет приспособительное значение: сбрасывая листья, растения резко уменьшают испаряющую поверхность, защищаются от возможных поломок под тяжестью снега. У вечнозелёных растений массовый листопад приурочен обычно к началу роста новых побегов из почек и поэтому происходит не осенью, а весной.

Осенний листопад в лесу имеет важное биологическое значение. Опавшие листья — хорошее органическое и минеральное удобрение. Ежегодно в на их лиственных лесах опавшие листья служат материалом для минерализации, производимой почвенными бактериями и грибами. Кроме того, опавшая листва стратифицирует семена, опавшие до листопада, предохраняет корни от вымерзания, препятствует развитию мохового покрова и т.д. некоторые виды деревьев сбрасывают не только листву, но и годовалые побеги.

Работа выполняется в табличной форме (образец приведен ниже).

3. Таблица выполняется в электронном виде, на листах формата А4, положение страницы – книжное.

4. Задание сдается преподавателю в электронном виде на следующем занятии после выдачи задания!

Таблица описания листьев деревьев и кустарников

Лист и его формы

Основная часть обычного листа – это его пластинка. Листовая пластинка – это расширенное плоское образование, выполняющее функции фотосинтеза, газо- и водообмена. Кроме пластинки листья часто имеют черешок – удлиненную цилиндрическую стеблеподобную часть, с помощью которой пластинка прикрепляется к стеблю. Если черешок есть, лист называют черешковым, а при его отсутствии – сидячим. Нижняя часть листа – его основание – может разрастаться и в виде трубки охватывать стебель. Такое образование называется листовым влагалищем. Довольно часто при основании листа у черешка находятся особые выросты – прилистники. Прилистники бывают парными, различной формы и величины, зеленые или бесцветные, свободные или сросшиеся с черешком. Прилистники могут опадать по мере роста листа или не опадать.

Простыми называют листья, имеющие одну листовую пластинку на черешке, а у сложного листа к одному черешку прикрепляются несколько пластинок, называемых листочками.

Простой лист. Листовая пластинка у простого листа может быть цельной или, напротив, расчлененной, т.е. в той или иной степени изрезанной, состоящей из выступающих частей пластинки и выемок. Для определения характера расчлененности, степени и формы изрезанности листовых пластинок и правильного наименования таких листьев, прежде всего, следует учесть, как распределяются выступающие части пластинки – лопасти, доли, сегменты – по отношению к черешку и к главной жилке листа. Если выступающие части симметричны главной жилке, то такие листья называют перистыми. Если выступающие части выходят как бы из одной точки, листья называются пальчатыми. По глубине вырезов листовой пластинки различают листья: лопастные, если выемки (глубина надрезов) не доходят до половины ширины полупластинки (выступающие части называют лопастями); раздельные, при глубине вырезов, заходящих глубже половины ширины полупластины (выступающие части – доли); рассеченные, при глубине надрезов, доходящих до главной жилки или почти ее касающихся (выступающие части – сегменты).

Сложный лист. Сложные листья по аналогии с простыми называются перистыми и пальчатыми с добавлением слова «сложный». Например, перистосложный, пальчатосложный, тройчатосложный и т.д. Если сложный лист оканчивается одним листочком, лист называется непарноперистосложным. Если же он оканчивается парой листочков, то называется парноперистосложным.

Расчленение пластинки простого листа, так же как и ветвление частей сложного листа, может быть многократным. В этих случаях с учетом порядка ветвления или расчленения говорят о дважды-, трижды-, четыреждыперистых или пальчатых, простых или сложных листьях.

Основные формы листовой пластинки

Все растения состоят из вегетативных и генеративных органов. Последние отвечают за размножение. У покрытосеменных растений это цветок. Он является Вегетативные органы растения - это корневая система и побеги. Корневая система состоит из главного корня, боковых и дополнительных. Иногда главный корень может быть невыраженным. Такая система называется мочковатой. Побеги состоят из стеблей, листьев и почек. Стебли обеспечивают транспорт веществ, а также поддерживают положение растения. Почки отвечают за образование новых побегов, а также цветков. Лист - самый важный орган растения, так как он отвечает за фотосинтез.

Как он устроен

Состоят из нескольких видов тканей. Давайте рассмотрим их подробнее.

С точки зрения гистологии

Сверху находится - эпидермис. Это слой толщиной в одну-две клетки с плотными оболочками, расположенными очень близко друг к другу. Эта ткань защищает лист от механических повреждений, а также препятствует чрезмерному испарению воды из органа. Кроме того, эпидермис участвует в газообмене. Для этого в ткани присутствуют устьица.

Сверху эпидермиса находится также дополнительный защитный слой, который состоит из воска, выделяемого клетками покровной ткани.

Под слоем эпидермиса находится столбчатая, или ассимиляционная паренхима. Это листа. В ней происходит процесс фотосинтеза. Клетки паренхимы расположены вертикально. В них содержится большое количество хлоропластов.

Под ассимиляционной тканью находится проводящая система листа, а также губчатая паренхима. - это ксилема и флоэма. Первая состоит из сосудов - мертвых клеток, соединенных вертикально друг с другом, не имеющих горизонтальных перегородок. По ксилеме вода с растворенными в ней веществами поступает в лист из корня. Флоэма же состоит из - удлинненных живых клеток. По этой проводящей ткани растворы транспортируются, наоборот, от листа к корню.

Губчатая ткань отвечает за газообмен и испарение воды.

Под перечисленными слоями находится нижний эпидермис. Он так же, как и верхний, выполняет защитную функцию. В нем тоже есть устьица.

Строение листьев

От стебля отходит черешок, на котором и крепится листовая пластинка - основная часть листа. От черешка к краям листа отходят жилки. Кроме того, в его соединениях со стеблем находятся прилистники. Сложные листья, примеры которых будут рассмотрены ниже, устроены таким образом, что на одном черешке находится несколько листовых пластин.

Какими бывают листья

В зависимости от строения можно выделить простые и сложные листья. Простые состоят из одной пластины. Сложный лист - тот, который состоит из нескольких пластин. Он может быть разнообразным по строению.

Виды сложных листьев

Существует несколько их типов. Факторами для разделения их на виды может служить количество пластин, форма краев пластин, а также форма листа. Она бывает пяти типов.

Форма листа - какой она бывает

Существуют такие ее типы:

  • стреловидная;
  • овальная;
  • кольцевидная;
  • линейная;
  • сердцевидная;
  • веерообразная (лист полукруглый);
  • заостренная;
  • игольчатая;
  • клинообразная (треугольный лист, крепится к стеблю на вершине);
  • копьевидная (острый с колючками);
  • лопатовидная;
  • лопастная (лист разделен на несколько лопастей);
  • ланцетная (длинный, широкий посередине лист);
  • обратноланцетовидная (верхняя часть листа шире, чем нижняя);
  • обратносердцевидная (лист в форме сердца, крепится к стеблю острым концом);
  • ромбовидная;
  • серповидная.

Сложный лист может иметь пластины любой из перечисленных форм.

Форма краев пластин

Это еще один фактор, который позволяет охарактеризовать сложный лист.

В зависимости от формы краев пластин листья бывают пяти видов:

  • зубчатые;
  • городчатые;
  • пильчатые;
  • выемчатые;
  • цельнокрайные.

Другие типы сложных листьев

В зависимости от количества пластин и их расположения, выделяют следующие виды сложных листьев:

  • пальчатые;
  • перистые;
  • двуперистые;
  • трехлистные;
  • перстонадрезные.

У пальчатых сложных листьев все пластины расходятся по радиусу от черешка, напоминая своим видом пальцы руки.

Перистые листья обладают листовыми пластинами, расположенными вдоль черешка. Они делятся на два типа: парноперистые и непарноперистые. У первых нет верхушечной пластины, их количество кратно двум. У непарноперистых верхушечная пластина присутствует.

У двуперистых листьев пластины располагаются вдоль вторичных черешков. Те же, в свою очередь, крепятся к главному.

Трехлистные обладают тремя пластинками.

Перстонадрезные листья подобны перистым.

Листья сложные - их жилкование

Существует три его типа:

  • идут ровно от основания листа к его краям по всей пластинке.
  • Дуговое. Жилки идут не ровно, а в форме дуги.
  • Сетчатое. Делится на три подвида: радиальное, пальчатое и перистонервное. При радиальном жилковании лист имеет три основных жилки, от которых отходят остальные. Пальчатое характеризуется наличием более трех основных жилок, которые разделяются недалеко от основания черешка. При перистонервном лист имеет одну основную жилку, от которой отходят остальные.

Наиболее часто сложный лист обладает сетчатым жилкованием.

Расположение листьев на стебле

И простые, и сложные листья могут располагаться по-разному. Существует четыре типа расположения:

  • Мутовчатое. Листья крепятся по три штуки к узкому стеблю - мутовке. Они могут быть перекрестными, при этом каждая мутовка относительно предыдущей повернута на 90 градусов. Растениями с таким расположением листьев являются элодея, вороний глаз.
  • Розеточное. Все листья находятся на одной и той же высоте и расположены по кругу. Такими розетками обладает агава, хлорофитум.
  • Последовательное (очередное). Листья крепятся по одному на каждый узел. Таким образом они располагаются у березы, пеларгонии, яблони, розы.
  • Супротивное. При таком типе расположения на каждом узле находится по два листа. Каждый узел обычно повернут относительно предыдущего на 90 градусов. Также листья могут располагаться двумя рядами без поворота узлов. Примерами растений с таким расположением листьев являются мята, жасмин, сирень, фуксия, яснотка.

Первые два типа листорасположения характерны для растений с простыми листьями. А вот вторые два вида могут относиться и к сложным листьям.

Примеры растений

Теперь давайте рассмотрим различные виды сложных листьев с примерами. Их выделяют достаточное количество. Растения со сложными листьями могут быть различных жизненных форм. Это могут быть и кусты, и деревья.

Очень распространенные растения со сложными листьями - ясени. Это деревья семейства маслиновых, класса двудольных, отдела покрытосеменных. Они обладают непарноперистыми сложными листьями, обладающими семью-пятнадцатью пластинами. Форма края - зубчатая. Жилкование - сетчатое. Листья ясеня используются в медицине в качестве мочегонного средства.

Ярким примером куста со сложными листьями можно назвать малину. Эти растения обладают непарноперистыми листьями с тремя-семью пластинами на длинных черешках. Тип жилкования - перистонервное. Форма края листа - городчатая. Листья малины также используются в народной медицине. В них содержатся вещества, обладающие противовоспалительным эффектом.

Еще одно дерево со сложными листьями - рябина. Листья у нее парноперистые. Количество пластин - около одиннадцати. Жилкование - перистонервное.

Следующий пример - клевер. Он обладает сложными тройчатыми листьями. Жилкование у клевера сетчатое. Форма края листа - цельнокрайные. Кроме клевера, тройчатыми листьями также обладает бобовник.

Сложными листьями также обладает такое растения, как альбиция. Она имеет двуперистые листья.

Еще один яркий пример растения со сложными листьями - акация. Этот куст обладает сетчатым жилкованием. Форма края - цельнокрайная. Тип листа - двуперистые. Количество пластин - от одиннадцати штук.

Еще одно растение со сложными листьями - земляника. Тип листа - трехлистные. Жилкование - сетчатое. Эти листья также применяются в народной медицине. Обычно при атеросклерозе и других сосудистых заболеваниях.

Заключение

В качестве вывода приведем обобщающую таблицу о сложных листьях.

Сложные листья, примеры, описание
Тип сложного листа Описание Примеры растений
Пальчатые листья Пластины расходятся от черешка веером, напоминая пальцы человека Каштан конский
Непарноперистые Количество пластин нечетное, присутствует верхушечная. Все пластины располагаются вдоль основного черешка Ясень, роза, рябина, акация
Парноперистые Количество листовых пластин нечетное, верхушечная отсутствует. Все они располагаются вдоль основного черешка. Горох, душистый горошек
Двуперистые Пластинки крепятся на вторичные черешки, растущие из основного черешка. Альбиция
Тройчатые (трехлистные) Имеют три пластинки, которые отходят от основного черешка Клевер, бобовник
Перстонадрезные Пластинки устроены по типу перистых, но не разделены полностью Рябина

Вот мы и рассмотрели строение сложного листа, его которые ими обладают.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Практически единственным источником энергии для всех живых организмов является энергия солнца. Напрямую преобразовать солнечную энергию может только одна группа организмов - зеленые растения и фотосинтезирующие организмы. Речь идет об уникальном природном явлении - фотосинтезе. Все остальные организмы поглощают энергию солнца, преобразованную зелеными растениями в энергию органических веществ - сахаров. Главный орган растений, участвующий в фотосинтезе - лист. Поэтому изучение листьев растений - очень актуальная тема . Растения сами используют для себя произведённые вещества, как источник питания. Казалось бы - чем больше лист, тем лучше, так как больше вырабатывается «пищи». Но у огромного большинства наших северных растений лесов и лугов листья некрупные и даже мелкие. Так отчего же зависит форма листа? Мы предположили гипотезу - форма зависит от условий окружающей среды - освещённости, температуры, увлажнения.

Этот вопрос определил цель нашего исследования - выяснить зависимость между условиями окружающей среды и формой листовых пластинок растений луга и леса

Задачи :

    Рассмотреть особенности внутреннего, внешнего строения листа, как главного органа растений, его функции;

    Определить, в чём проявляется влияние условий окружающей среды на форму листовой пластинки;

    Собрать образцы светолюбивых растений луга и тенелюбивых растений леса;

    Провести исследование - сравнить размеры, формы листовых пластинок светолюбивых и тенелюбивых растений

Объект исследования: зелёные растения

Предмет исследования: листовые пластинки растений нашей местности.

Глава 1. Лист - важнейший орган растений

1.1. Внешнее строение листа

Внешнее строение листа. Лист всегда занимает боковое положение в побеге, располагаясь в узлах стебля. У преобладающего числа высших растений лист имеет плоскую форму.

У листа различают листовую пластинку, черешок, прилистники и основание, которым он прикрепляется к стеблю. Есть растения, у которых черешок и прилистники отсутствуют. У многих растений листья простые — они имеют только одну листовую пластинку (рисунок 1) .

Рис. 1. Внешнее строение листа: 1 — листовая пластинка; 2 — жилки; 3 — черешок; 4 — прилистники; 5 — основание листа

Есть растения, у которых лист имеет несколько листовых пластинок. Такие листья называют сложными (рисунок 2).

Рис. 2. Разнообразие листьев. Простые листья: 1 — сирень; 2 — яблоня; 3 — клен; 5 — одуванчик. Сложные листья: 4 — клевер; 6 — шиповник; 7 — малина; 8 — земляника; 9 - люпин

При изучении внешнего строения листа хорошо видно, что на листовой пластинке многих растений четко выражены жилки. Они представлены пучками проводящей и механической ткани. По жилкам в лист поступают вода и минеральные соли и отводятся органические вещества, образовавшиеся в листе. У одних растений жилки примерно одинаковые по величине и лежат дугообразно или параллельно друг другу. У других они представлены перисто-разветвленной сетью мелких жилок, сходящихся в одну крупную центральную жилку в середине листа. Перистое и пальчатое жилкование характерно для листьев двудольных растений, а параллельное и дуговое — для листьев многих однодольных растений (см. приложение 1, с).

Размеры листьев у растений разные. Так, у пальмы, монстеры, кувшинки белой и кубышки желтой листья очень большие: их длина вместе с черешком достигает 150-200 см, у некоторых пальм — даже 5-12 м. А вот у вереска и иглицы они совсем мелкие, длиной всего 2-3 мм..

1.2. Внутренне строение листа

Снаружи лист покрыт кожицей. Она образована слоем прозрачных клеток покровной ткани, плотно прилегающих друг к другу. Кожица защищает внутренние ткани листа. Стенки ее клеток прозрачны, что позволяет свету легко проникать внутрь листа.

На нижней поверхности листа, среди прозрачных клеток кожицы, находятся очень мелкие парные зеленые клетки, между которыми есть щель. Пару замыкающих клеток и устьичную щель между ними называют устьицем. При недостаточном водоснабжении растения устьица закрыты. С поступлением воды в растение они открываются (рисунок 3).

Рис. 3 . Участие устьиц в газообмене и испарении влаги

Устьица встречаются в кожице всех наземных растений. Их количество у растений огромно — от 80 до 300 штук и больше на 1 мм² поверхности листа. Например, у клена на 1 мм² поверхности листа приходится 550 устьиц, а у кубышки желтой — 650.

Ткани листа. Внутри листа имеется очень много клеток хлорофильной ткани — мякоть листа. Из-за большого количества хлоропластов в клетках мякоти лист имеет зеленый цвет. Присутствие большого числа зеленых хлоропластов в мякоти листа свидетельствует о том, что в этой части осуществляется фотосинтез, т. е. здесь образуются органические вещества.

В мякоти листьев различают два типа клеток. По внешнему виду клеток и их расположению в мякоти листа различают столбчатую и губчатую ткани. Клетки столбчатой ткани содержат большую часть (примерно ¾) всех хлоропластов листа. Они лучше освещены, в них на свету образуется больше всего органических веществ. Через рыхлую губчатую ткань происходит газообмен и испарение воды (рис. 4).

Строение мякоти листа по-разному представлено у листьев, развивающихся в различных условиях освещения. У растений, выросших в условиях яркого освещения, листья обычно имеют два или три слоя столбчатой ткани — их называют световыми. У растений, выросших при недостатке света, в тени, столбчатые клетки образуют только один тонкий слой в верхней части листа — их называют теневыми.

Рис. 4 . Схема внутреннего строения листа

У большинства растений устьица располагаются преимущественно на нижней стороне листа, но у некоторых (например, у эвкалипта, капусты) они находятся на обеих сторонах листа. У растений с плавающими на воде листьями (кубышка, кувшинка) устьица сформировались только на верхней стороне листа, обращенной к воздушной среде .

1.3. Функции листа

Образование органических веществ. Зеленый лист выполняет важную функцию в жизни растения — здесь образуются органические вещества. Строение листа хорошо соответствует этой функции: он имеет плоскую листовую пластину, а в мякоти листа содержится огромное количество хлоропластов с зеленым хлорофиллом.

Образование органических веществ в процессе фотосинтеза - одна из основных функций листа.

Испарение воды — еще одна важная функция листа. Испарение обеспечивает взаимосвязь корней и листьев растения.

Процесс испарения воды листьями у растения регулируется открыванием и закрыванием устьиц. Закрывая устьица, растение защищает себя от потери воды.

Из внешних факторов на работу устьиц влияет сухость воздуха, условия водоснабжения, яркость света и температура. Так, во время засухи у большинства растений устьица закрыты. Многие растения открывают устьица лишь вечером и ночью, когда спадает жара. Но у большинства деревьев, теневыносливых растений, многих злаков максимальное испарение воды происходит в дневное время.

Газообмен. Листья благодаря работе устьиц осуществляют и такую важную функцию, как газообмен между растением и атмосферой. Через устьица в лист с атмосферным воздухом поступают кислород и углекислый газ.

Листопад. В процессе жизнедеятельности листья к концу вегетационного периода стареют, питательные вещества из них оттекают, хлорофилл начинает разрушаться, листья окрашиваются в желтый или красноватый цвет, а в тканях листа скапливаются отработанные ненужные вещества. Состарившиеся листья удаляются благодаря листопаду. Это выработанное в процессе эволюции приспособление обеспечивает не только удаление ненужных растению веществ, но и сокращение поверхности надземных органов в неблагоприятный период года.

У некоторых растений листья приобрели и другие функции. Многие растения размножаются листьями (вегетативное размножение). Некоторые растения в листьях откладывают запасные питательные вещества, например очиток, молодило, алоэ, кочанная капуста, лук.

У гороха посевного и мышиного горошка наряду с обычными листьями имеются листья в виде усиков. С их помощью непрямостоячие побеги этих растений, цепляясь за опору, поднимаются выше и выносятся к свету.

У барбариса, караганы, верблюжьей колючки некоторые листья стали колючками, которые защищают побеги от животных. У кактусов листья видоизменились в острые иглы.

В природе есть немало растений, которые способны с помощью листьев улавливать насекомых и их переваривать. Обычно такие насекомоядные растения произрастают на почвах, бедных минеральными веществами, особенно с недостаточным содержанием азота, фосфора, калия и серы. Из тел насекомых эти растения получают необходимые им неорганические вещества.

В озерах на территории России часто встречается растение пузырчатка, плавающая у поверхности воды. Среди ее нитевидных зеленых листьев некоторые имеют форму ловчих пузырьков (диаметром 2-5 мм) с крышечкой. Попавшие в них мелкие животные, например дафнии, перевариваются и всасываются растением. Так растение компенсирует дефицит минеральных веществ (особенно соединений азота), которых недостаточно в воде озера .

Глава 2. Влияние условий окружающей среды на форму листовой пластинки растений

2.1. Влияние климатических характеристик на размерлиста

Считается, что современное распределение растений на Земле определяется климатом, и поэтому зоны растительности почти всегда соответствуют климатическим зонам. Климат и почвы прежде всего влияют на внешние характеристики видов растительности, что обусловливает внешнее подобие растений из областей со сходными экологическими условиями. Листья, как фотосинтетические органы растения оптимально приспособлены к климатическим условиям.

Форма листовой пластинки отражает особенности окружающей среды.

Подтверждением этого предположения послужили результаты исследований ученых из университетов Тюбингена (Германия) и Лиона (Франция), которые изучали зависимость формы листовой пластинки деревьев Европы от климатических факторов. Ученые ограничились изучением древесной растительности. Материал был собран на территории Европы, данные были получены на 1835 участках. На каждом участке виды деревьев группировались по 25 показателям.

Результат: форма листа в основном зависит от температур (среднегодовой, суммарной, минимальной, продолжительности промерзания почвы), причем в большей степени от минимальных, чем от максимальных - наиболее тесная взаимосвязь наблюдается между минимальной температурой и наличием у листьев острого основания. Связь между наличием у деревьев цельнокрайних листьев и температурой несколько слабее, хотя холод можно рассматривать как стрессовый фактор, способствующий образованию у листовой пластинки неровностей по краю. Параметры, связанные с осадками, не имели достоверной связи с показателями формы листьев.

Полученные данные свидетельствуют, что важнейшее значение в эволюции листопадной флоры имело приспособление к холоду, главным образом, к наиболее низким температурам.

2.2. Зависимость формы листовой пластинки от освещённости

2.2.1. Влияние освещённости на строение листьев

Анатомическое строение листьев светолюбивых и тенелюбивых растений представляет немаловажные отличия. Листья светолюбивых растений часто равносторонни, если они занимают вертикальное положение, листья же тенелюбивых растений всегда двусторонни.

Светолюбивые и тенелюбивые (гелиофильные и гелиофобные) растения различаются между собою значительно как по своей внешней форме, так и по внутреннему строению.

Сильное освещение замедляет рост побегов; поэтому-то гелиофильные растения часто короткочленистые и сжаты, гелиофобные же наоборот длинночленистые.

Растения, составляющие лесной ковер, обыкновенно высоки, с длинным стеблем. Листья светолюбивых растений обыкновенно узки, мелки, линейной или сходной формы, между тем как тенелюбивые растения в тех же условиях имеют большие, широкие листья. Листья майника двулистного, растения, произрастающего обыкновенно в тени кустарников, достигают на солнце всего 1/3, своей обычной величины.

Листья многих видов растений достигают большей величины в северных странах, чем в широтах более южных, что, по-видимому, связано с большей продолжительности периода слабого освещения.

Листья светолюбивых растений часто складчаты (злаки, пальмы), или кудрявы и бугорчаты, между тем как листья теневых растений плоски и гладки.

Палисадная ткань теневых растений всегда невысока, (стебли, бедные листьями или совсем лишённые листьев, имеют обыкновенно высокую палисадную ткань вокруг стебля); зато губчатая ткань достигает у гелиофобных растений более мощного развития. Листья типичных гелиофобных растений состоят всего из одного ряда клеток (костенец колосовидный). Листья гелиофильных растений имеют узкие, а листья гелиофобных растений широкие межклеточные пространства.

Кожица (эпидермис) светолюбивых растений толста и обыкновенно не содержит хлорофилла (она всегда лишена хлорофилла на верхней стороне листа); иногда она преобразовывается путем поперечного деления клеток в многослойную водоносную ткань (тропические растения); её кутикула бывает всегда утолщена.

Кожица теневых растений тонка и однослойна, иногда содержит хлорофилл и покрыта тонкой кутикулой. Листья светолюбивых растений часто блестящи и отражают много света, примером тому служат многочисленные тропические растения.

Листья теневых растений имеют матовый цвет и увядают на сухом воздухе гораздо быстрее листья светолюбивых растений. Эпидермические клетки листьев светолюбивых растений, в особенности на верхней стороне листа, имеют менее волнистые стенки, чем у листьев теневых растений. Только нижняя поверхность двусторонних листьев светолюбивых растений снабжена устьицами или, по крайней мере, они здесь более многочисленны, чем на верхней стороне (исключение представляют некоторые альпийские растения) и погружены в ткань листа. У теневых растений устьица распределены равномерно на обеих сторонах листа, во всяком случае, однако более многочисленны на нижней стороне, и вместе с тем лежат в одной плоскости со всей поверхностью листа или даже приподняты над нею.

Степень волосистости весьма различна. Гелиофильные растения, часто покрыты густыми волосками, серо-войлочного или серебристо-белого цвета, имеют небольшую опушённость, особенно на нижней поверхности (многие растения, растущие на скалах, на пустошах и в степях). Листья гелиофобных растений вообще гораздо менее волосисты, иногда даже совсем голы.

По поводу влияния света на окраску растений следует отметить, что помимо значения света для образования хлорофилла, он может еще, по-видимому, вызывать образование красного клеточного сока (антокиана). Под влиянием непосредственных солнечных лучей эпидермические клетки голых частей растений окрашиваются нередко в красный цвет, что служит, по-видимому, защитой протоплазме и хлорофиллу (многие молодые побеги, проростки, высокогорных и других растений), хотя имеются утверждения, что окраска последних может зависеть и от влияния холода.

Кроме того, ряд исследователей указывают, что окраска листьев, цветков и плодов растений в более высоких широтах более интенсивна, что, быть может, обусловливается действием почти непрерывного освещения.

Из сказанного выше очевидно, что свет оказывает большое влияние на внешнюю форму и внутреннее строение растений. Это подтверждается еще способностью многих растений приспособлять свое анатомическое строение и, главным образом, строение своих листьев к разным условиям освещения ("пластичные листья"). Лист бука, например, имеет на солнце иное строение, чем лист того же бука в тени. Расположение хлорофилльных зерен в клетке и связанный с этим цвет листьев находятся в зависимости от освещения, более сильное освещение вызывает менее интенсивную окраску, и обратно.

2.2.2. Классификация растений по отношению к свету

По отношению к свету все растения, в том числе и лесные деревья, подразделяются на следующие экологические группы:

    гелиофиты (светолюбивые), требующие много света и способные переносить лишь незначительное затенение (к светолюбивым относятся почти все кактусы и другие суккуленты, многие представители тропического происхождения, некоторые субтропические кустарники);

    сциофиты (тенелюбивые)- довольствующиеся наоборот незначительным освещением и могущие существовать в тени (к теневыносливым относятся различные хвойные растения, многие папоротники, некоторые декоративно-лиственные растения);

    теневыносливые (факультативные гелиофиты).

Гелиофиты. Световые растения. Обитатели открытых мест обитания: лугов, степей, верхних ярусов лесов, ранневесенние растения, многие культурные растения.

· мелкие размеры листьев; встречается сезонный диморфизм: весной листья мелкие, летом - крупнее;

· листья располагаются под большим углом, иногда почти вертикально;

· листовая пластинка блестящая или густо опушенная;

· образуют разряженные насаждения.

Сциофиты. Не выносят сильного света. Места обитания: нижние затемненные ярусы; обитатели глубоких слоев водоемов. Прежде всего, это растения, растущие под пологом леса (кислица, копытень, сныть).

Характеризуются следующими признаками:

· листья крупные, нежные;

· листья темно-зеленого цвета;

· листья подвижные;

· характерна так называемая листовая мозаика (то есть особое расположение листьев, при котором листья максимально не заслоняют друг друга).

Теневыносливые. Занимают промежуточное положение. Часто хорошо развиваются в условиях нормального освещения, но могут при этом переносить и затемнение. По своим признакам занимают промежуточное положение.

Глава 3. Исследование зависимости величины листовой пластинки от уровня освещённости

Для исследования мы взяли гербарные образцы растений луга и леса, собранные нами в конце июня.

Исследование № 1 .Сравнение площади листовой пластинки гелиофитов луга и теневыносливых растений леса.

Использовали метод промеров. Из каждой пробы методом случайной выборки выбирают по 10 зеленых листьев, определяют площадь методом линейных измерений по длине (Д) и наибольшей ширине (Ш). Площадь измеренных листьев (S) рассчитывают по формуле:

где n - число измеренных листьев.

Данный метод подходит для злаков и других культур с линейной, округлой формой листьев.

Растение леса

Растение луга

S (растения леса) = 87,5×45,2×0,7×10=27685мм

S (растения луга) = 44,1×7,4×0,7×10=2284,4 мм

Вывод : Площадь листовых пластинок растений леса больше листовых пластинок растений луга примерно в 13 раз.

Причина - разные условия освещённости.

Исследование № 2

Сравнение растений луга и леса по форме листовой пластинки (Смотри приложение 1, с. 23).

Растения леса

Форма пластинки

Растения луга

Форма пластинки

Черёмуха

тупоконечная

край двупильчатый

Люцерна хмелевая

Тройчатый лист ресничный край

Костяника

Непарноперистый

Край двупильчатый

Клевер луговой

Тройчатый лист

Край простой

Непарноперистый

Край пильчатый

Овсяница луговая

Линейный лист

Край простой

Обратнояйцевидны

Край пильчатый

Подмаренник северный

Пальчатый лист

Двупильчатый край

Кизильник

Овальный

Край простой

Рожь луговая

Игольчатый

Край простой

Овальный

Край ресничный

Вьюнок полевой

Сердцевидный

Край простой

Папоротник орляк

Сложный непарноперистый

Край простой

Вейник наземный

Линейный лист, край простой

Гирча тминолистная

Сложный непарноперистый

Лопастный лист

Липучка обыкновенная

Линейный лист

Край простой

Брусника

Лист простой обратнояйцевидный

Нивяник обыкновенный

Линейный лист

Пильчатый карй

Воронец колосовидный

Сложный непарноперистый

Лопастный край двупильчатый

Гравилат речной

Тройчатый лист

Двупильчатый край

Вывод : В лесу у кустарников простые листья, а у большинства трав - сложные. Видимо, это связано с небольшим количеством света у поверхности земли и необходимостью увеличения растениями площади листовой пластинки за счёт сложных листьев

На лугу - листья линейные (у злаков), реже - простые и сложные.

Исследование № 3

Исследование лесных и луговых растений по цвету листовой пластинки (визуально).

Сравнив листья луговых и лесных растений, увидели - листья луговых растений имеют ярко-зелёный цвет (злаки, герань луговая, вьюн полевой, синюха голубая, гвоздика травянка, гравилат и другие), некоторые светло-зелёный, иногда напоминающий налёт (икотник серо-зелёный, полынь горькая, пустырник пятилопастной, лапчатка серебристая).

Листья лесных растений имеют ярко-зелёный и тёмно-зелёный цвет практически все (черника, кизильник, папоротник, рябина, черёмуха, земляника, брусника и другие).

Вывод - растения лесаимеют более тёмные листья с большим количеством хлоропласт из-за дефицита света под пологом леса.

Заключение

В начале работы мы ставили перед собой цель - выяснить зависимость между условиями окружающей среды и формой листовых пластинок растений луга и леса. Рассмотрев работы других авторов по этой теме и проведя собственное исследование, мы можем сделать выводы:

    Лист занимает боковое положение в побеге, у большинства высших растений лист имеет плоскую форму. Плоская форма листа обеспечивает наибольшее соприкосновение поверхности растения с воздушной средой и солнечным светом.

    Лист - это специальный орган, содержащий клетки, которые улавливают солнечный свет, необходимый для осуществления фотосинтеза (воздушного питания). Кроме того лист участвует в газообмене и транспирации - испарении влаги

    Листья, как фотосинтетические органы растения оптимально приспособлены к климатическим условиям. Форма листа в основном зависит от температур, причем в большей степени от низких, чем от высоких. Наблюдается связь между наличием у деревьев цельнокрайних листьев и температурой. Осадки на форму листовой пластинки не влияют (в умеренной зоне).

    Свет оказывает наибольшее влияние на внешнюю форму и внутреннее строение растений. Расположение хлорофилльных зерен в клетке и связанный с этим цвет листьев находятся в зависимости от освещения, более сильное освещение вызывает менее интенсивную окраску, и обратно.

    Мы провели исследования, сравнив растения луга и леса, и пришли к выводу - листья растений луга имеют меньшую площадь листовой пластинки, светлее цвет, листья в основном простые, чем у растений леса. Обозначили причину - разный уровень освещённости. Свет - основной фактор, влияющий на растения.

    Свою гипотезу - форма листьев зависит от условий окружающей среды - освещённости, температуры, увлажнения мы считаем подтверждённой.

Информационные источники

    Учебник биологии 6 класс. Электронная версия (http://blgy.ru/biology6/leaf)

    http://agrosbornik.ru/innovacii1/106-2011-10-09-15-29-31.html

    http://eco-rasteniya.ru/svet-kak-ekologicheskij-faktor.html

    http://lektsii.com/1-100601.html

    http://botanical_dictionary.academic.ru/5917

    https://ru.wikipedia.org/wiki/

    dic.academic.ru/dic.nsf/bse/74352/

Приложение 1

Различие листьев по форме, краю листовой пластинки, жилкованию

Форма листа:

    Веерообразный: полукруглый, или в виде веера

    Двоякоперистый: каждый листик перистый

    Дельтовидный: лист треугольный, крепится к стеблю в основании треугольника

    Дланевидный: разделённый на много лопастей

    Заострённый: клиновидный с длинной вершиной

    Игольчатый: тонкий и острый

    Клинообразный: лист треугольный, лист крепится к стеблю на вершине

    Копьевидный: острый, с колючками

    Ланцетный: лист длинный, широкий посередине

    Линейный: лист длинный и очень узкий

    Лопастный: с несколькими лопастями

    Лопатовидный: лист в виде лопаты

    Непарноперистый: перистый лист с верхушечным листиком

    Обратноланцетовидный: верхняя часть шире, чем нижняя

    Обратносердцевидный: лист в виде сердца, крепится к стеблю на выступающем конце

    Обратнояйцевидный: в виде слезы, лист крепится к стеблю на выступающем конце

    Овальный: лист овальный, с коротким концом

    Овальный: лист овальный, яйцевидный, с заострённым концом в основании

    Однолопастный: с одним листиком

    Округлый: круглой формы

    Пальчатый: лист разделён на пальцевидные лопасти

    Парноперистый: перистый лист без верхушечного листика

    Перисторассечённый: простой рассечённый лист, у которого сегменты расположены симметрично относительно оси листовой пластины

    Перистый: два ряда листиков

Приложение 1

    Почковидный: лист в форме почки

    Рассечённый: листовая пластинка такого листа имеет вырезы, достигающие более двух третей её полуширины; части листовой пластинки рассечённого листа называются сегментами

    Ромбовидный: лист в форме ромба

    Серповидный: в виде серпа

    Сердцевидный: в виде сердца, лист крепится к стеблю в районе ямочки

    Стреловидный: лист в виде наконечника стрелы, с расширяющимися лопастями в основании

    Триждыперистый: каждый листочек в свою очередь делится на три

    Тройчатый: лист разделён на три листочка

    Шиловидный: в виде шила

    Щитовидный: лист закруглённый, стебель крепится снизу

Край листа

    Цельнокрайный — с гладким краем, без зубцов

    Реснитчатый — с бахромой по краям

    Зубчатый — с зубчиками, как у каштана. Шаг зубчика может быть большой и маленький

    • Округлозубчатый — с волнообразными зубцами, как у бука.

      Мелкозубчатый — с мелкими зубчиками

    Лопастной — изрезанный, с вырезами, не достигающими середины, как у многих дубов

    Пильчатый — с несимметричными зубчиками, направленными вперёд в сторону макушки листа, как у крапивы.

    • Двупильчатый — каждый зубчик имеет более мелкие зубчики

      Мелкопильчатый — с мелкими несимметричными зубчиками

    Выемчатый — с глубокими, волнообразными вырезами, как у многих видов щавеля

    Колючий — с неэластичными, острыми концами, как у некоторых падубов и чертополоха.